Extensions 1→N→G→Q→1 with N=C32 and Q=S3×D4

Direct product G=N×Q with N=C32 and Q=S3×D4
dρLabelID
S3×D4×C3272S3xD4xC3^2432,704

Semidirect products G=N:Q with N=C32 and Q=S3×D4
extensionφ:Q→Aut NdρLabelID
C321(S3×D4) = C3⋊S3⋊D12φ: S3×D4/C4D6 ⊆ Aut C323612+C3^2:1(S3xD4)432,301
C322(S3×D4) = C12.86S32φ: S3×D4/C4D6 ⊆ Aut C32366+C3^2:2(S3xD4)432,302
C323(S3×D4) = C62⋊D6φ: S3×D4/C22D6 ⊆ Aut C323612+C3^2:3(S3xD4)432,323
C324(S3×D4) = C622D6φ: S3×D4/C22D6 ⊆ Aut C32366C3^2:4(S3xD4)432,324
C325(S3×D4) = S3×S3≀C2φ: S3×D4/S3D4 ⊆ Aut C32128+C3^2:5(S3xD4)432,741
C326(S3×D4) = D4×C32⋊C6φ: S3×D4/D4S3 ⊆ Aut C323612+C3^2:6(S3xD4)432,360
C327(S3×D4) = D4×He3⋊C2φ: S3×D4/D4S3 ⊆ Aut C32366C3^2:7(S3xD4)432,390
C328(S3×D4) = (S3×C6)⋊D6φ: S3×D4/Dic3C22 ⊆ Aut C32248+C3^2:8(S3xD4)432,601
C329(S3×D4) = C3⋊S34D12φ: S3×D4/Dic3C22 ⊆ Aut C32248+C3^2:9(S3xD4)432,602
C3210(S3×D4) = C3⋊S3×D12φ: S3×D4/C12C22 ⊆ Aut C3272C3^2:10(S3xD4)432,672
C3211(S3×D4) = C12⋊S32φ: S3×D4/C12C22 ⊆ Aut C3272C3^2:11(S3xD4)432,673
C3212(S3×D4) = C123S32φ: S3×D4/C12C22 ⊆ Aut C32484C3^2:12(S3xD4)432,691
C3213(S3×D4) = S3×D6⋊S3φ: S3×D4/D6C22 ⊆ Aut C32488-C3^2:13(S3xD4)432,597
C3214(S3×D4) = S3×C3⋊D12φ: S3×D4/D6C22 ⊆ Aut C32248+C3^2:14(S3xD4)432,598
C3215(S3×D4) = D64S32φ: S3×D4/D6C22 ⊆ Aut C32248+C3^2:15(S3xD4)432,599
C3216(S3×D4) = D6⋊S32φ: S3×D4/D6C22 ⊆ Aut C32488-C3^2:16(S3xD4)432,600
C3217(S3×D4) = C3⋊S3×C3⋊D4φ: S3×D4/C2×C6C22 ⊆ Aut C3272C3^2:17(S3xD4)432,685
C3218(S3×D4) = C6223D6φ: S3×D4/C2×C6C22 ⊆ Aut C3236C3^2:18(S3xD4)432,686
C3219(S3×D4) = C6224D6φ: S3×D4/C2×C6C22 ⊆ Aut C32244C3^2:19(S3xD4)432,696
C3220(S3×D4) = C3×S3×D12φ: S3×D4/C4×S3C2 ⊆ Aut C32484C3^2:20(S3xD4)432,649
C3221(S3×D4) = S3×C12⋊S3φ: S3×D4/C4×S3C2 ⊆ Aut C3272C3^2:21(S3xD4)432,671
C3222(S3×D4) = C3×D6⋊D6φ: S3×D4/D12C2 ⊆ Aut C32484C3^2:22(S3xD4)432,650
C3223(S3×D4) = C3×Dic3⋊D6φ: S3×D4/C3⋊D4C2 ⊆ Aut C32244C3^2:23(S3xD4)432,659
C3224(S3×D4) = C3×D4×C3⋊S3φ: S3×D4/C3×D4C2 ⊆ Aut C3272C3^2:24(S3xD4)432,714
C3225(S3×D4) = D4×C33⋊C2φ: S3×D4/C3×D4C2 ⊆ Aut C32108C3^2:25(S3xD4)432,724
C3226(S3×D4) = C3×S3×C3⋊D4φ: S3×D4/C22×S3C2 ⊆ Aut C32244C3^2:26(S3xD4)432,658
C3227(S3×D4) = S3×C327D4φ: S3×D4/C22×S3C2 ⊆ Aut C3272C3^2:27(S3xD4)432,684

Non-split extensions G=N.Q with N=C32 and Q=S3×D4
extensionφ:Q→Aut NdρLabelID
C32.(S3×D4) = D4×C9⋊C6φ: S3×D4/D4S3 ⊆ Aut C323612+C3^2.(S3xD4)432,362
C32.2(S3×D4) = D9×D12φ: S3×D4/C12C22 ⊆ Aut C32724+C3^2.2(S3xD4)432,292
C32.3(S3×D4) = C36⋊D6φ: S3×D4/C12C22 ⊆ Aut C32724C3^2.3(S3xD4)432,293
C32.4(S3×D4) = D9×C3⋊D4φ: S3×D4/C2×C6C22 ⊆ Aut C32724C3^2.4(S3xD4)432,314
C32.5(S3×D4) = D18⋊D6φ: S3×D4/C2×C6C22 ⊆ Aut C32364+C3^2.5(S3xD4)432,315
C32.6(S3×D4) = C3×D4×D9φ: S3×D4/C3×D4C2 ⊆ Aut C32724C3^2.6(S3xD4)432,356
C32.7(S3×D4) = D4×C9⋊S3φ: S3×D4/C3×D4C2 ⊆ Aut C32108C3^2.7(S3xD4)432,388

׿
×
𝔽